Minimal rank-metric codes or, equivalently, linear cutting blocking sets are characterized in terms of the second generalized rank weight, via their connection with evasiveness properties of the associated $q$-system. Using this result, we provide the first construction of a family of $\mathbb{F}_{q^m}$-linear MRD codes of length $2m$ that are not obtained as a direct sum of two smaller MRD codes. In addition, such a family has better parameters, since its codes possess generalized rank weights strictly larger than those of the previously known MRD codes. This shows that not all the MRD codes have the same generalized rank weights, in contrast to what happens in the Hamming metric setting.
翻译:最起码的分级码或相等的线性截断屏蔽装置通过与相关美元系统的蒸发特性的联系,以第二普遍等级重量为第二普遍等级重量的特征。利用这一结果,我们首次构建了一个以$mathbb{F ⁇ q ⁇ m}$为单位的大家庭,其长度为200万美元的线性MRD编码,这些编码不是作为两个较小的MRD编码的直接和得到的。此外,这样的家庭有较好的参数,因为其普遍等级重量严格高于以前已知的MRD编码。这表明并非所有的MRD编码都具有相同的一般等级重量,这与Hamming基准设置中的情况不同。