In Multi-Task Learning, tasks may compete and limit the performance achieved on each other rather than guiding the optimization trajectory to a common solution, superior to its single-task counterparts. There is often not a single solution that is optimal for all tasks, leading practitioners to balance tradeoffs between tasks' performance, and to resort to optimality in the Pareto sense. Current Multi-Task Learning methodologies either completely neglect this aspect of functional diversity, and produce one solution in the Pareto Front predefined by their optimization schemes, or produce diverse but discrete solutions, each requiring a separate training run. In this paper, we conjecture that there exist Pareto Subspaces, i.e., weight subspaces where multiple optimal functional solutions lie. We propose Pareto Manifold Learning, an ensembling method in weight space that is able to discover such a parameterization and produces a continuous Pareto Front in a single training run, allowing practitioners to modulate the performance on each task during inference on the fly. We validate the proposed method on a diverse set of multi-task learning benchmarks, ranging from image classification to tabular datasets and scene understanding, and show that Pareto Manifold Learning outperforms state-of-the-art algorithms.


翻译:在多任务学习中,任务可能相互竞争,限制彼此实现的绩效,而不是将优化轨迹引导为共同的解决方案,优于单一任务对应方。常常没有一种对所有任务最合适的单一解决方案,让从业者平衡任务业绩之间的权衡,并采用Pareto意义的最佳方法。当前的多任务学习方法要么完全忽视功能多样性的这一方面,在Pareto Front中产生一种由其优化计划预先界定的解决方案,要么在Pareto Front中产生一种不同的但互不关联的解决方案,每个解决方案都需要单独的培训运行。在本文中,我们推测存在Pareto Subspace,即具有多重最佳功能解决方案的重量子空间。我们建议采用Pareto Manifold Learning,这是在重量空间中的一种组合方法,能够发现这种参数化,并在单一的培训运行中产生持续的Pareto Front,让从业者在对飞行的推论期间调整每一项任务的业绩。我们验证了一套关于多种任务学习基准的拟议方法,从图像分类到表格式的矩阵和图像式算法,显示从图像格式到图表式的矩阵到图表式的矩阵。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月29日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年3月29日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年11月29日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年3月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员