We show that the Wynn recurrence (the missing identity of Frobenius of the Pad\'{e} approximation theory) can be incorporated into the theory of integrable systems as a reduction of the discrete Schwarzian Kadomtsev-Petviashvili equation. This allows, in particular, to present the geometric meaning of the recurrence as a construction of the appropriately constrained quadrangular set of points. The interpretation is valid for a projective line over arbitrary skew field what motivates to consider non-commutative Pad\'{e} theory. We transfer the corresponding elements, including the Frobenius identities, to the non-commutative level using the quasideterminants. Using an example of the characteristic series of the Fibonacci language we present an application of the theory to the regular languages. We introduce the non-commutative version of the discrete-time Toda lattice equations together with their integrability structure. Finally, we discuss application of the Wynn recurrence in a different context of the geometric theory of discrete analytic functions.
翻译:我们显示,Wynn重现(Pad\'{e}近似理论中Frobenius的缺失身份)可以作为Schwarzian Kadomtsev-Petviashvili等式的减缩,纳入不可调和系统理论中。 这特别允许将重现的几何含义作为适当受限制的方形一组点的构造来展示。 解释对任意的斜方形场的投影线有效,它促使人们考虑非相互调和 Pad\'{e}理论。 我们用准定义将相应的元素,包括Frobenius身份,转移到非互换级别上。 我们用Fibonacci语言的特征系列示例来展示该理论对常规语言的应用。 我们引入离散式Toda rattice 等式的非交替版本及其不可调和性结构。 最后, 我们讨论Wyn重现在离析函数的几何理论的不同背景下的应用。