In this paper, we consider the problem of simultaneously estimating Poisson parameters under the standardized squared error loss in situations where we can use side information in aggregated data. Bayesian shrinkage estimators are constructed using conjugate gamma and Dirichlet priors. We compare the risk functions of estimators, obtain conditions for domination, and prove minimaxity and admissibility of a proposed estimator. Finally, two extensions are discussed.
翻译:在本文中,我们考虑了在可使用侧边信息进行汇总数据的情况下,在标准化的平方误差损失的情况下,同时估算Poisson参数的问题。Bayesian 缩水估计值是使用同伽马和迪里赫莱的前身建造的。我们比较了测算员的风险功能,获得统治条件,并证明提议的测算员的微缩速度和可接受性。最后,讨论了两个扩展。