The Berry-Ess\'{e}en upper bounds of moment estimators and least squares estimators of the mean and drift coefficients in Vasicek models driven by general Gaussian processes are studied. When studying the parameter estimation problem of Ornstein-Uhlenbeck (OU) process driven by fractional Brownian motion, the commonly used methods are mainly given by Kim and Park, they show the upper bound of Kolmogorov distance between the distribution of the ratio of two double Wiener-It\^{o} stochastic integrals and the Normal distribution. The main innovation in this paper is extending the above ratio process, that is to say, the numerator and denominator respectively contain triple Wiener-It\^{o} stochastic integrals at most. As far as we know, the upper bounds between the distribution of above estimators and the Normal distribution are novel.
翻译:由 Gaussian 常规进程驱动的 Vasicek 模型中平均和漂移系数的测算器和最小正方值测算器的上界。 当研究由分数布朗运动驱动的 Ornstein- Uhlenbeck (OU) 过程的参数估计问题时, 通常使用的方法主要由Kim 和 Park 给出, 它们显示 Kolmogorov 的上界距离是两个双倍维内尔- It ⁇ o 混合体和正常分布之间的分布。 本文的主要创新是扩展以上比例过程, 也就是说, 数字器和分母体分别包含三个维内尔- It ⁇ o 的随机组合。 据我们所知, 上层分配和正常分布之间的上界是新奇的。