We study random walks on the giant component of Hyperbolic Random Graphs (HRGs), in the regime when the degree distribution obeys a power law with exponent in the range $(2,3)$. In particular, we focus on the expected times for a random walk to hit a given vertex or visit, i.e. cover, all vertices. We show that up to multiplicative constants: the cover time is $n(\log n)^2$, the maximum hitting time is $n\log n$, and the average hitting time is $n$. The first two results hold in expectation and a.a.s. and the last in expectation (with respect to the HRG). We prove these results by determining the effective resistance either between an average vertex and the well-connected "center" of HRGs or between an appropriately chosen collection of extremal vertices. We bound the effective resistance by the energy dissipated by carefully designed network flows associated to a tiling of the hyperbolic plane on which we overlay a forest-like structure.


翻译:我们研究的是超曲随机图(HRGs)巨型成份的随机行走。 当度分布符合权力法, 且在范围为$(2,3美元) 时, 我们研究的是超曲随机图(HRGs) 巨型成份的随机行走。 特别是, 我们关注随机行走击中给定的脊椎或访问( 覆盖) 的预期时间, 即所有脊椎。 我们显示, 最多可以乘以倍增常数: 覆盖时间是 $n( log n) $2, 最高击球时间是 $n\ log n, 平均击球时间是 $n. 。 头两个结果维持在期待和 a.a. 中, 以及最后的结果( HRG) 。 我们通过确定平均的脊椎和连接良好的“ 中心” 之间, 或者在适当选择的 边脊椎收集之间的有效抵抗力。 我们把能量消散的有效抵抗力通过精心设计的网络流来控制, 与我们覆盖类似森林结构的双向上的超叶平面的平面结构相关联 。

0
下载
关闭预览

相关内容

简称 哈工大,创建于1920年,是C9联盟成员之一,国内工科顶尖高校。1999年成为首批九所985工程院校之一,校训是“规格严格,功夫到家”。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月6日
Arxiv
0+阅读 · 2022年9月5日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员