We consider the Voronoi diagram of points in the real plane when the distance between two points $a$ and $b$ is given by $L_p(a-b)$ where $L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$ We prove that the Voronoi diagram has a limit as $p$ converges to zero from above or from below: it is the diagram that corresponds to the distance function $L_*((x,y)) = |xy|$. In this diagram, the bisector of two points in general position consists of a line and two branches of a hyperbola that split the plane into three faces per point. We propose to name $L_*$ as defined above the "geometric $L_0$ distance".
翻译:当用美元(x,y) = (x,y) = (x,y) = (x,y) = (x,y) = (x,y) = (x,y) ⁇ ⁇ ⁇ 1/p}) 美元给出两点之间的距离时,我们考虑Voranoi 实际平面上的点数图。 我们证明Voranoi 图表有一个上限,因为美元从上方或下方接近零:是该图与距离函数$(x,y) = ⁇ (xy) = ⁇ (xy) $相对应。在本图中,两点的两点的两部分由一线和两分支组成,每点将平面分成三块。我们提议将美元命名为“Geoolog $L_0$ 距离” 以上定义的美元。