The number of malware is constantly on the rise. Though most new malware are modifications of existing ones, their sheer number is quite overwhelming. In this paper, we present a novel system to visualize and map millions of malware to points in a 2-dimensional (2D) spatial grid. This enables visualizing relationships within large malware datasets that can be used to develop triage solutions to screen different malware rapidly and provide situational awareness. Our approach links two visualizations within an interactive display. Our first view is a spatial point-based visualization of similarity among the samples based on a reduced dimensional projection of binary feature representations of malware. Our second spatial grid-based view provides a better insight into similarities and differences between selected malware samples in terms of the binary-based visual representations they share. We also provide a case study where the effect of packing on the malware data is correlated with the complexity of the packing algorithm.
翻译:恶意软件的数量在不断上升。 虽然大多数新的恶意软件是对现有软件的修改, 但其数量非常庞大。 在本文中, 我们展示了一个新颖的系统, 将数百万的恶意软件可视化和映射成二维( 2D) 空间网格中的点点。 这样就可以在大型恶意软件数据集中建立可视化的关系, 用于开发分解解决方案, 快速筛选不同的恶意软件并提供情境意识。 我们的方法将互动显示中的两种可视化连接在一起。 我们的第一种观点是根据对恶意软件的二维特征表示的缩放, 将样本之间的相似性进行空间点直观化。 我们的第二个空间网格视图可以更深入地了解所选的恶意软件样本在基于二维的视觉图示中的相似性和差异。 我们还提供案例研究, 将恶意软件数据包装的效果与包装算法的复杂性联系起来。