Despite the remarkable recent progress, person Re-identification (Re-ID) approaches are still suffering from the failure cases where the discriminative body parts are missing. To mitigate such cases, we propose a simple yet effective Horizontal Pyramid Matching (HPM) approach to fully exploit various partial information of a given person, so that correct person candidates can be still identified even if some key parts are missing. Within the HPM, we make the following contributions to produce a more robust feature representation for the Re-ID task: 1) we learn to classify using partial feature representations at different horizontal pyramid scales, which successfully enhance the discriminative capabilities of various person parts; 2) we exploit average and max pooling strategies to account for person-specific discriminative information in a global-local manner; 3) we introduce a novel horizontal erasing operation during training to further resist the problem of missing parts and boost the robustness of feature representations. Extensive experiments are conducted on three popular benchmarks including Market-1501, DukeMTMC-reID and CUHK03. We achieve mAP scores of 83.1%, 74.5% and 59.7% on these benchmarks, which are the new state-of-the-arts.
翻译:尽管最近取得了显著进展,但人重新身份鉴定(Re-ID)方法仍然因歧视身体部分缺失的失败案例而受到影响。为了减少此类案例,我们建议采用简单而有效的横向金字塔匹配(HPM)方法,充分利用特定个人的各种部分信息,这样,即使缺少某些关键部分,也能够找到正确的人选。在人重新身份鉴定(HPM)中,我们做出了以下贡献,为重新身份鉴定任务提供更强有力的特征代表:1)我们学会在不同横向金字塔尺度上使用部分特征表示法进行分类,这成功地提高了不同个人部分的歧视性能力;2)我们利用平均和最大集中战略,以全球-地方方式核算针对特定个人的歧视性信息;3)我们在培训期间采用了新的横向淘汰行动,以进一步抵制缺失部分的问题,提高特征陈述的稳健性。我们在市场1501号、DukyMTMC-reID号和CUHK03号等三个流行基准上进行了广泛的实验。我们取得了83.1%、74.5%和59.7%的移动基准分数,这些是新的状态。