Despite the remarkable recent progress, person Re-identification (Re-ID) approaches are still suffering from the failure cases where the discriminative body parts are missing. To mitigate such cases, we propose a simple yet effective Horizontal Pyramid Matching (HPM) approach to fully exploit various partial information of a given person, so that correct person candidates can be still identified even if some key parts are missing. Within the HPM, we make the following contributions to produce a more robust feature representation for the Re-ID task: 1) we learn to classify using partial feature representations at different horizontal pyramid scales, which successfully enhance the discriminative capabilities of various person parts; 2) we exploit average and max pooling strategies to account for person-specific discriminative information in a global-local manner; 3) we introduce a novel horizontal erasing operation during training to further resist the problem of missing parts and boost the robustness of feature representations. Extensive experiments are conducted on three popular benchmarks including Market-1501, DukeMTMC-reID and CUHK03. We achieve mAP scores of 83.1%, 74.5% and 59.7% on these benchmarks, which are the new state-of-the-arts.

3
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.

Person re-identification (PReID) has received increasing attention due to it is an important part in intelligent surveillance. Recently, many state-of-the-art methods on PReID are part-based deep models. Most of them focus on learning the part feature representation of person body in horizontal direction. However, the feature representation of body in vertical direction is usually ignored. Besides, the spatial information between these part features and the different feature channels is not considered. In this study, we introduce a multi-branches deep model for PReID. Specifically, the model consists of five branches. Among the five branches, two of them learn the local feature with spatial information from horizontal or vertical orientations, respectively. The other one aims to learn interdependencies knowledge between different feature channels generated by the last convolution layer. The remains of two other branches are identification and triplet sub-networks, in which the discriminative global feature and a corresponding measurement can be learned simultaneously. All the five branches can improve the representation learning. We conduct extensive comparative experiments on three PReID benchmarks including CUHK03, Market-1501 and DukeMTMC-reID. The proposed deep framework outperforms many state-of-the-art in most cases.

0
3
下载
预览

Person Re-Identification (ReID) refers to the task of verifying the identity of a pedestrian observed from non-overlapping surveillance cameras views. Recently, it has been validated that re-ranking could bring extra performance improvements in person ReID. However, the current re-ranking approaches either require feedbacks from users or suffer from burdensome computation cost. In this paper, we propose to exploit a density-adaptive kernel technique to perform efficient and effective re-ranking for person ReID. Specifically, we present two simple yet effective re-ranking methods, termed inverse Density-Adaptive Kernel based Re-ranking (inv-DAKR) and bidirectional Density-Adaptive Kernel based Re-ranking (bi-DAKR), which are based on a smooth kernel function with a density-adaptive parameter. Experiments on six benchmark data sets confirm that our proposals are effective and efficient.

0
4
下载
预览

Person re-identification (ReID) is to identify pedestrians observed from different camera views based on visual appearance. It is a challenging task due to large pose variations, complex background clutters and severe occlusions. Recently, human pose estimation by predicting joint locations was largely improved in accuracy. It is reasonable to use pose estimation results for handling pose variations and background clutters, and such attempts have obtained great improvement in ReID performance. However, we argue that the pose information was not well utilized and hasn't yet been fully exploited for person ReID. In this work, we introduce a novel framework called Attention-Aware Compositional Network (AACN) for person ReID. AACN consists of two main components: Pose-guided Part Attention (PPA) and Attention-aware Feature Composition (AFC). PPA is learned and applied to mask out undesirable background features in pedestrian feature maps. Furthermore, pose-guided visibility scores are estimated for body parts to deal with part occlusion in the proposed AFC module. Extensive experiments with ablation analysis show the effectiveness of our method, and state-of-the-art results are achieved on several public datasets, including Market-1501, CUHK03, CUHK01, SenseReID, CUHK03-NP and DukeMTMC-reID.

0
8
下载
预览

Person re-identification (Person ReID) is a challenging task due to the large variations in camera viewpoint, lighting, resolution, and human pose. Recently, with the advancement of deep learning technologies, the performance of Person ReID has been improved swiftly. Feature extraction and feature matching are two crucial components in the training and deployment stages of Person ReID. However, many existing Person ReID methods have measure inconsistency between the training stage and the deployment stage, and they couple magnitude and orientation information of feature vectors in feature representation. Meanwhile, traditional triplet loss methods focus on samples within a mini-batch and lack knowledge of global feature distribution. To address these issues, we propose a novel homocentric hypersphere embedding scheme to decouple magnitude and orientation information for both feature and weight vectors, and reformulate classification loss and triplet loss to their angular versions and combine them into an angular discriminative loss. We evaluate our proposed method extensively on the widely used Person ReID benchmarks, including Market1501, CUHK03 and DukeMTMC-ReID. Our method demonstrates leading performance on all datasets.

0
5
下载
预览

Deep convolutional neural networks (CNNs) have demonstrated dominant performance in person re-identification (Re-ID). Existing CNN based methods utilize global average pooling (GAP) to aggregate intermediate convolutional features for Re-ID. However, this strategy only considers the first-order statistics of local features and treats local features at different locations equally important, leading to sub-optimal feature representation. To deal with these issues, we propose a novel \emph{weighted bilinear coding} (WBC) model for local feature aggregation in CNN networks to pursue more representative and discriminative feature representations. In specific, bilinear coding is used to encode the channel-wise feature correlations to capture richer feature interactions. Meanwhile, a weighting scheme is applied on the bilinear coding to adaptively adjust the weights of local features at different locations based on their importance in recognition, further improving the discriminability of feature aggregation. To handle the spatial misalignment issue, we use a salient part net to derive salient body parts, and apply the WBC model on each part. The final representation, formed by concatenating the WBC eoncoded features of each part, is both discriminative and resistant to spatial misalignment. Experiments on three benchmarks including Market-1501, DukeMTMC-reID and CUHK03 evidence the favorable performance of our method against other state-of-the-art methods.

0
4
下载
预览

Person Re-Identification (ReID) requires comparing two images of person captured under different conditions. Existing work based on neural networks often computes the similarity of feature maps from one single convolutional layer. In this work, we propose an efficient, end-to-end fully convolutional Siamese network that computes the similarities at multiple levels. We demonstrate that multi-level similarity can improve the accuracy considerably using low-complexity network structures in ReID problem. Specifically, first, we use several convolutional layers to extract the features of two input images. Then, we propose Convolution Similarity Network to compute the similarity score maps for the inputs. We use spatial transformer networks (STNs) to determine spatial attention. We propose to apply efficient depth-wise convolution to compute the similarity. The proposed Convolution Similarity Networks can be inserted into different convolutional layers to extract visual similarities at different levels. Furthermore, we use an improved ranking loss to further improve the performance. Our work is the first to propose to compute visual similarities at low, middle and high levels for ReID. With extensive experiments and analysis, we demonstrate that our system, compact yet effective, can achieve competitive results with much smaller model size and computational complexity.

0
4
下载
预览

In this paper, we propose a graph correspondence transfer (GCT) approach for person re-identification. Unlike existing methods, the GCT model formulates person re-identification as an off-line graph matching and on-line correspondence transferring problem. In specific, during training, the GCT model aims to learn off-line a set of correspondence templates from positive training pairs with various pose-pair configurations via patch-wise graph matching. During testing, for each pair of test samples, we select a few training pairs with the most similar pose-pair configurations as references, and transfer the correspondences of these references to test pair for feature distance calculation. The matching score is derived by aggregating distances from different references. For each probe image, the gallery image with the highest matching score is the re-identifying result. Compared to existing algorithms, our GCT can handle spatial misalignment caused by large variations in view angles and human poses owing to the benefits of patch-wise graph matching. Extensive experiments on five benchmarks including VIPeR, Road, PRID450S, 3DPES and CUHK01 evidence the superior performance of GCT model over other state-of-the-art methods.

0
5
下载
预览

In recent years, a growing body of research has focused on the problem of person re-identification (re-id). The re-id techniques attempt to match the images of pedestrians from disjoint non-overlapping camera views. A major challenge of re-id is the serious intra-class variations caused by changing viewpoints. To overcome this challenge, we propose a deep neural network-based framework which utilizes the view information in the feature extraction stage. The proposed framework learns a view-specific network for each camera view with a cross-view Euclidean constraint (CV-EC) and a cross-view center loss (CV-CL). We utilize CV-EC to decrease the margin of the features between diverse views and extend the center loss metric to a view-specific version to better adapt the re-id problem. Moreover, we propose an iterative algorithm to optimize the parameters of the view-specific networks from coarse to fine. The experiments demonstrate that our approach significantly improves the performance of the existing deep networks and outperforms the state-of-the-art methods on the VIPeR, CUHK01, CUHK03, SYSU-mReId, and Market-1501 benchmarks.

0
7
下载
预览

Typical person re-identification (ReID) methods usually describe each pedestrian with a single feature vector and match them in a task-specific metric space. However, the methods based on a single feature vector are not sufficient enough to overcome visual ambiguity, which frequently occurs in real scenario. In this paper, we propose a novel end-to-end trainable framework, called Dual ATtention Matching network (DuATM), to learn context-aware feature sequences and perform attentive sequence comparison simultaneously. The core component of our DuATM framework is a dual attention mechanism, in which both intra-sequence and inter-sequence attention strategies are used for feature refinement and feature-pair alignment, respectively. Thus, detailed visual cues contained in the intermediate feature sequences can be automatically exploited and properly compared. We train the proposed DuATM network as a siamese network via a triplet loss assisted with a de-correlation loss and a cross-entropy loss. We conduct extensive experiments on both image and video based ReID benchmark datasets. Experimental results demonstrate the significant advantages of our approach compared to the state-of-the-art methods.

0
5
下载
预览

In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid person matching network (PPMN) to obtain correspondence representations. These correspondence representations are fused to perform the re-identification task. Further, the proposed framework is optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art literature, especially on the rank-1 recognition rate.

0
7
下载
预览
小贴士
相关论文
Omni-directional Feature Learning for Person Re-identification
Di Wu,Hong-Wei Yang,De-Shuang Huang
3+阅读 · 2018年12月13日
Ruo-Pei Guo,Chun-Guang Li,Yonghua Li,Jiaru Lin
4+阅读 · 2018年5月20日
Jing Xu,Rui Zhao,Feng Zhu,Huaming Wang,Wanli Ouyang
8+阅读 · 2018年5月16日
Wangmeng Xiang,Jianqiang Huang,Xianbiao Qi,Xiansheng Hua,Lei Zhang
5+阅读 · 2018年5月1日
Qin Zhou,Heng Fan,Hang Su,Hua Yang,Shibao Zheng,Haibin Ling
4+阅读 · 2018年4月30日
Yiluan Guo,Ngai-Man Cheung
4+阅读 · 2018年4月2日
Qin Zhou,Heng Fan,Shibao Zheng,Hang Su,Xinzhe Li,Shuang Wu,Haibin Ling
5+阅读 · 2018年4月1日
Zhanxiang Feng,Jianhuang Lai,Xiaohua Xie
7+阅读 · 2018年3月30日
Jianlou Si,Honggang Zhang,Chun-Guang Li,Jason Kuen,Xiangfei Kong,Alex C. Kot,Gang Wang
5+阅读 · 2018年3月27日
Chaojie Mao,Yingming Li,Yaqing Zhang,Zhongfei Zhang,Xi Li
7+阅读 · 2018年3月7日
Top