We present a stepping stabilization control that addresses external push disturbances on bipedal walking robots. The stepping control is synthesized based on the step-to-step (S2S) dynamics of the robot that is controlled to have an approximately constant center of mass (COM) height. We first learn a linear S2S dynamics with bounded model discrepancy from the undisturbed walking behaviors of the robot, where the walking step size is taken as the control input to the S2S dynamics. External pushes are then considered as disturbances to the learned S2S (L-S2S) dynamics. We then apply the system-level-synthesis (SLS) approach on the disturbed L-S2S dynamics to robustly stabilize the robot to the desired walking while satisfying the kinematic constraints of the robot. We successfully realize the proposed approach on the walking of the bipedal robot AMBER and Cassie subject to push disturbances, showing that the approach is general, effective, and computationally-efficient for robust disturbance rejection.
翻译:我们展示了一种脚踏式稳定控制, 以解决双足行走机器人的外部推动干扰。 脚踏式控制是根据被控制为约常态质量高度中心( COM) 的机器人的一步到一步动态合成的。 我们首先学习了线性 S2S 动态, 其模型与机器人的无干扰行走行为存在界限差异, 将行走步步步体大小作为S2S 动态的控制输入。 然后, 外部推力被视为对学习的 S2S ( L- S2S) 动态的干扰。 然后, 我们用系统级合成法对被控制的L- S2S 动态进行系统级同步。 我们用系统级同步法将机器人稳固稳定到所期望的行走速度, 同时满足了机器人的动态限制。 我们成功地实现了关于双足机器人AMBER 和 Cassi 的行走方式的拟议方法, 以推动扰动为对象, 显示该方法是通用、 有效且计算高效的, 以稳健的扰动拒绝 。