项目名称: 航发叶片型面的自适应几何偏差砂带磨削方法及其关键技术研究

项目编号: No.51275545

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 黄云

作者单位: 重庆大学

项目金额: 70万元

中文摘要: 本项目针对制约我国航空发动机精锻叶身无余量叶片边缘精密加工的技术瓶颈,系统地研究精锻无余量叶片边缘自适应几何偏差砂带磨削方法的基本理论及其关键技术。主要研究内容:钛合金及高温合金等航空发动机叶片常用材料的砂带磨削特性、叶片边缘几何偏差数学建模方法、自适应几何偏差修正方法、七轴联动叶片数控砂带磨削运动控制方法、基于柔性磨削技术的材料定量去除方法、极薄型叶片磨削过程中颤振抑制方法、基于测量技术的叶片自适应加工技术等方法及关键技术,开发功能完善、界面友好的航空发动机叶片数控砂带磨削软件系统。通过本项目的研究,解决航空发动机精锻叶身无余量叶片边缘表面精密加工的技术难题,为七轴联动叶片数控砂带磨床的研制提供理论支撑,从而为提高航空发动机叶片的加工质量奠定坚实的基础。

中文关键词: 航发叶片边缘;砂带磨削;自适应;几何偏差;

英文摘要: This project is aimed at the technical bottleneck in precision processing for margin of aviation engine blade with no allowance after precision forging in China, it systematically researches the basic theory and key technologies for self-adaptive geometric deviation abrasive belt grinding of aviation engine blade with no allowance after precision forging. The main research includes: ①the abrasive belt grinding characteristics of commonly used materials for aviation engine blade such as titanium alloy and high temperature alloy; ②geometric deviation mathematical modeling method of aviation engine blade; ③adaptive geometric deviation correction methods; ④the seven shaft linkage blade NC abrasive belt grinding motion control method; ⑤the material quantitative removing methods based on flexible grinding technology; ⑥the vibration suppression method in the thin blade grinding; ⑦the blade self-adaptive processing method and key technology, based on online measurement; ⑧develop a perfect function, friendly interface software system of aviation engine blade NC abrasive belt grinding. Through this project, it can solve the technical problems for precision machining of surface of aviation engine blade margin with no allowance after precision forging, provide theoretic support for the development of seven shaft linkage b

英文关键词: Aviation engine blade margin;Abrasive belt grinding;Self-adaption;Geometric deviation;

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
82+阅读 · 2022年4月17日
开放型对话技术研究综述
专知会员服务
36+阅读 · 2021年12月28日
2021年中国人工智能基础层行业发展研究报告,60页pdf
专知会员服务
67+阅读 · 2021年9月3日
专知会员服务
7+阅读 · 2021年6月19日
专知会员服务
42+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年5月9日
工业人工智能的关键技术及其在预测性维护中的应用现状
基于视觉的三维重建关键技术研究综述
专知会员服务
154+阅读 · 2020年5月1日
基于流线的流场可视化绘制方法综述
专知
0+阅读 · 2021年12月9日
人脸合成技术综述
专知
0+阅读 · 2021年11月21日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
泡泡机器人SLAM
67+阅读 · 2019年6月16日
【泡泡图灵智库】HSfM: 混合运动恢复结构(CVPR)
泡泡机器人SLAM
10+阅读 · 2018年12月13日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关主题
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
82+阅读 · 2022年4月17日
开放型对话技术研究综述
专知会员服务
36+阅读 · 2021年12月28日
2021年中国人工智能基础层行业发展研究报告,60页pdf
专知会员服务
67+阅读 · 2021年9月3日
专知会员服务
7+阅读 · 2021年6月19日
专知会员服务
42+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年5月9日
工业人工智能的关键技术及其在预测性维护中的应用现状
基于视觉的三维重建关键技术研究综述
专知会员服务
154+阅读 · 2020年5月1日
相关资讯
基于流线的流场可视化绘制方法综述
专知
0+阅读 · 2021年12月9日
人脸合成技术综述
专知
0+阅读 · 2021年11月21日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
泡泡机器人SLAM
67+阅读 · 2019年6月16日
【泡泡图灵智库】HSfM: 混合运动恢复结构(CVPR)
泡泡机器人SLAM
10+阅读 · 2018年12月13日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员