Case-based Reasoning (CBR) on high-dimensional and heterogeneous data is a trending yet challenging and computationally expensive task in the real world. A promising approach is to obtain low-dimensional hash codes representing cases and perform a similarity retrieval of cases in Hamming space. However, previous methods based on data-independent hashing rely on random projections or manual construction, inapplicable to address specific data issues (e.g., high-dimensionality and heterogeneity) due to their insensitivity to data characteristics. To address these issues, this work introduces a novel deep hashing network to learn similarity-preserving compact hash codes for efficient case retrieval and proposes a deep-hashing-enabled CBR model HeCBR. Specifically, we introduce position embedding to represent heterogeneous features and utilize a multilinear interaction layer to obtain case embeddings, which effectively filtrates zero-valued features to tackle high-dimensionality and sparsity and captures inter-feature couplings. Then, we feed the case embeddings into fully-connected layers, and subsequently a hash layer generates hash codes with a quantization regularizer to control the quantization loss during relaxation. To cater to incremental learning of CBR, we further propose an adaptive learning strategy to update the hash function. Extensive experiments on public datasets show that HeCBR greatly reduces storage and significantly accelerates case retrieval. HeCBR achieves desirable performance compared with the state-of-the-art CBR methods and performs significantly better than hashing-based CBR methods in classification.


翻译:以数据独立的散射法为依据的以往方法依赖于随机预测或人工构建,这不适用于解决特定数据问题(例如,高维性和异质性),因为它们对数据特性不敏感。为了解决这些问题,这项工作引入了一个新的深层散列网络,以学习类似保存缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩略图代码,用于高效案件检索,并提议一个深增缩的 CBR 模型HCBR 。具体地说,我们引入了嵌入位置,以代表混和多线性互动层,以获得多线性互动层,这可有效地过滤零值特性,以解决高维度和偏移,并捕捉符合数据特性的突变组合。然后,我们把案件嵌入完全连接层的州级散列网引入了类似保存缩略图,并随后将快速缩缩缩缩缩缩缩缩缩缩略图的CBRBRRBR,从而在快速缩缩略图中大幅更新了不断升级的缩略图。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月17日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员