We show that a specific skew-symmetric form of nonlinear hyperbolic problems leads to energy and entropy bounds. Next, we exemplify by considering the compressible Euler equations in primitive variables, transform them to skew-symmetric form and show how to obtain energy and entropy estimates. Finally we show that the skew-symmetric formulation lead to energy and entropy stable discrete approximations if the scheme is formulated on summation-by-parts form.
翻译:我们展示了非线性双曲问题特定的斜面对称形式导致能量和环球。 其次,我们通过考虑原始变量中的可压缩的尤尔方程式,将其转换为斜面对称形式,并展示如何获得能量和倍增估计值。 最后,我们展示了,如果以相加法形式制定方案,则斜面对称配方可导致能量和酶稳定离散近似值。