We present a numerical approximation of the solutions of the Euler equations with a gravitational source term. On the basis of a Suliciu type relaxation model with two relaxation speeds, we construct an approximate Riemann solver, which is used in a first order Godunov-type finite volume scheme. This scheme can preserve both stationary solutions and the low Mach limit to the corresponding incompressible equations. In addition, we prove that our scheme preserves the positivity of density and internal energy, that it is entropy satisfying and also guarantees not to give rise to numerical checkerboard modes in the incompressible limit. Later we give an extension to second order that preserves positivity, asymptotic-preserving and well-balancing properties. Finally, the theoretical properties are investigated in numerical experiments.
翻译:我们以引力源术语展示了Euler方程式解决方案的数值近似值。 我们以两个放松速度的苏利西乌型放松模型为基础,构建了近似Riemann解答器, 用于第一个顺序的Godunov型有限体积计划。 这个计划可以将固定式解决方案和低Mach限保留在相应的不可压缩方程式中。 此外, 我们证明我们的方案保留了密度和内能的假设性, 它满足了诱导性, 并且保证不产生不可压缩限制的数字检查板模式。 我们后来延长了第二顺序的扩展, 以维护假设性、 抑制性和平衡性。 最后, 在数字实验中调查了理论属性 。</s>