This paper addresses the problem of dynamic matching in heterogeneous networks, where agents are subject to compatibility restrictions and stochastic arrival and departure times. In particular, we consider networks with one type of easy-to-match agents and multiple types of hard-to-match agents, each subject to its own set of compatibility constraints. Such a setting arises in many real-world applications, including kidney exchange programs and carpooling platforms, where some participants may have more stringent compatibility requirements than others. We introduce a novel approach to modeling dynamic matching by establishing ordinary differential equation (ODE) models, offering a new perspective for evaluating various matching algorithms. We study two algorithms, the Greedy Algorithm and the Patient Algorithm, which prioritize the matching of compatible hard-to-match agents over easy-to-match agents in heterogeneous networks. Our results show the trade-off between the conflicting goals of matching agents quickly and optimally, offering insights into the design of real-world dynamic matching systems. We present simulations and a real-world case study using data from the Organ Procurement and Transplantation Network to validate theoretical predictions.
翻译:本文探讨了不同网络动态匹配的问题,不同网络的代理商受到兼容性限制,进入和离开的时间也具有随机性。特别是,我们考虑网络中存在一种容易匹配的代理商和多种难以匹配的代理商,每个都受其自身的一系列兼容性制约。这种环境出现在许多现实应用中,包括肾交换方案和汽车搭配平台,一些参与者可能比其他参与者有更严格的兼容性要求。我们采用一种新颖的方法来模拟动态匹配,方法是建立普通差异方程(ODE)模型,为评估各种匹配算法提供新的视角。我们研究两种算法,即Greedy Algorithm和Latient Algorithm,这些算法优先考虑匹配兼容的难以匹配的代理商,而不是多种网络中的容易匹配的代理商。我们的结果显示,匹配代理商的相互冲突目标之间的交易迅速和最佳,为真实世界动态匹配系统的设计提供了深刻的见解。我们利用器官采购和移植网络的数据进行模拟和现实世界案例研究,以验证理论预测。