Simulation-Based Inference (SBI) is a promising Bayesian inference framework that alleviates the need for analytic likelihoods to estimate posterior distributions. Recent advances using neural density estimators in SBI algorithms have demonstrated the ability to achieve high-fidelity posteriors, at the expense of a large number of simulations ; which makes their application potentially very time-consuming when using complex physical simulations. In this work we focus on boosting the sample-efficiency of posterior density estimation using the gradients of the simulator. We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator. We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
翻译:以模拟为基础的模拟推论(SBI)是一个很有希望的贝耶斯推论框架,它减轻了分析估计后方分布可能性的必要性。履行机构算法中最近使用神经密度估计器的进展表明,以大量模拟为代价,能够实现高不洁后部;这使得在使用复杂的物理模拟时,其应用可能非常耗时。在这项工作中,我们侧重于利用模拟器的梯度提高后端密度估计的样本效率。我们提出了一种新的方法,用不同的模拟器进行神经波景异性估计。我们展示了梯度信息如何帮助限制后部的形状,提高取样效率。