We consider the problem of rectangular matrix completion in the regime where the matrix $M$ of size $n\times m$ is ``long", i.e., the aspect ratio $m/n$ diverges to infinity. Such matrices are of particular interest in the study of tensor completion, where they arise from the unfolding of an odd-order low-rank tensor. In the case where the sampling probability is $\frac{d}{\sqrt{mn}}$, we propose a new algorithm for recovering the singular values and left singular vectors of the original matrix based on a variant of the standard non-backtracking operator of a suitably defined bipartite graph. We show that when $d$ is above a Kesten-Stigum-type sampling threshold, our algorithm recovers a correlated version of the singular value decomposition of $M$ with quantifiable error bounds. This is the first result in the regime of bounded $d$ for weak recovery and the first result for weak consistency when $d\to\infty$ arbitrarily slowly without any polylog factors.
翻译:我们考虑在矩阵 $M$ 的大小为 $n\times m$ 的矩形矩阵完成问题,当 $m/n$ 趋向于无穷大时它是“长”的。这种矩阵在张量补全的研究中非常有趣,因为它们源于奇次低秩张量的展开。在采样概率为 $\frac{d}{\sqrt{mn}}$ 的情况下,我们基于一种适当定义的二分图的标准非回溯算子的变体,提出了一种用于恢复原始矩阵奇异值和左奇异向量的新算法。当 $d$ 超过 Kesten-Stigum型抽样阈值时,我们证明了我们的算法可以恢复与矩阵 $M$ 的奇异值分解相关的版本,并具有可量化的误差界限。这是在有界 $d$ 的弱恢复模型中的首个结果,也是在没有任何多项式对数因子的情况下,当 $d\to\infty$ 任意缓慢时的弱一致性首个结果。