Gaussian Graphical Models are widely employed for modelling dependence among variables. Likewise, finite Gaussian mixtures are often the standard way to go for model-based clustering of continuous features. With the increasing availability of high-dimensional datasets, a methodological link between these two approaches has been established in order to provide a framework for performing penalized model-based clustering in the presence of large precision matrices. Notwithstanding, current methodologies do not account for the fact that groups may possess different degrees of association among the variables, thus implicitly assuming similar levels of sparsity across the classes. We overcome this limitation by deriving group-wise penalty factors, automatically enforcing under or over-connectivity in the estimated graphs. The approach is entirely data-driven and does not require any additional hyper-parameter specification. Simulated data experiments showcase the validity of our proposal.


翻译:Gausian 图形模型被广泛用于各变量之间的建模依赖性。类似地,有限的高斯混合物往往是基于模型的连续特征组合的标准方法。随着高维数据集越来越多,在这两种方法之间建立了方法联系,以便为在大型精密矩阵存在的情况下进行受处罚的基于模型的组合提供一个框架。尽管如此,目前的方法并没有考虑到以下事实,即各变量组可能具有不同程度的关联性,从而隐含地假定各类别之间类似的松散程度。我们克服了这一限制,我们从中推出群体性的处罚因素,在估计的图表中自动执行下方或过度连接性。这种方法完全是数据驱动的,不需要额外的超参数规格。模拟数据实验显示了我们提案的有效性。

0
下载
关闭预览

相关内容

《图形模型》是国际公认的高评价的顶级期刊,专注于图形模型的创建、几何处理、动画和可视化,以及它们在工程、科学、文化和娱乐方面的应用。GMOD为其读者提供了经过彻底审查和精心挑选的论文,这些论文传播令人兴奋的创新,传授严谨的理论基础,提出健壮和有效的解决方案,或描述各种主题中的雄心勃勃的系统或应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/cvgip/
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Inference for Low-Rank Models
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员