Parametric stochastic simulators are ubiquitous in science, often featuring high-dimensional input parameters and/or an intractable likelihood. Performing Bayesian parameter inference in this context can be challenging. We present a neural simulator-based inference algorithm which simultaneously offers simulation efficiency and fast empirical posterior testability, which is unique among modern algorithms. Our approach is simulation efficient by simultaneously estimating low-dimensional marginal posteriors instead of the joint posterior and by proposing simulations targeted to an observation of interest via a prior suitably truncated by an indicator function. Furthermore, by estimating a locally amortized posterior our algorithm enables efficient empirical tests of the robustness of the inference results. Such tests are important for sanity-checking inference in real-world applications, which do not feature a known ground truth. We perform experiments on a marginalized version of the simulation-based inference benchmark and two complex and narrow posteriors, highlighting the simulator efficiency of our algorithm as well as the quality of the estimated marginal posteriors. Implementation on GitHub.
翻译:在科学中,常有高维输入参数和(或)难测的可能性。在这种情况下,执行巴耶斯参数的推论可能具有挑战性。我们提出了一个基于神经模拟推论的算法,同时提供模拟效率和快速经验外表测试能力,这是现代算法中独有的。我们的方法是模拟效率,方法是同时估计低维边际边际后星体,而不是联合远地点,并提议模拟,以通过一个指标函数事先适当抽出的兴趣观测为对象。此外,通过估算一个本地摊销后演算法,可以有效地对推论结果的稳健性进行实证测试。这种测试对于在现实世界应用中进行判断性检验十分重要,因为现实世界应用中的判断并不具有已知的地面真相。我们在模拟边际边际基准和两个复杂而狭窄的远地点进行实验,突出我们算法的模拟效率以及估计边际后子体的质量。在GitHub上实施。