Inverse probability weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of interest by constructing a pseudo-population in which selection biases are eliminated. Despite their ease of use, these estimators require the correct specification of a model for the weighting mechanism, are known to be inefficient, and suffer from the curse of dimensionality. We propose a class of nonparametric inverse probability weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso, a nonparametric regression function proven to converge at $n^{-1/3}$-rate to the true weighting mechanism. We demonstrate that our estimators are asymptotically linear with variance converging to the nonparametric efficiency bound. Unlike doubly robust estimators, our procedures require neither derivation of the efficient influence function nor specification of the conditional outcome model. Our theoretical developments have broad implications for the construction of efficient inverse probability weighted estimators in large statistical models and a variety of problem settings. We assess the practical performance of our estimators in simulation studies and demonstrate use of our proposed methodology with data from a large-scale epidemiologic study.
翻译:反概率加权估计估计误差是用来估计因果关系的最古老和最常用的程序类别。通过通过权重机制调整选择偏差,这些程序通过建立一个消除选择偏差的伪人口来估计一种感兴趣的影响。尽管这些估计容易使用,但这些估计要求为加权机制的模型的正确规格,已知是低效的,并受到维度诅咒的影响。我们建议了一组非参数偏差加权估计估计标准,其中加权机制是通过高度适应性拉索(一种非参数回归功能,经证明合用$ ⁇ -1/3美元计算)到真正的加权机制。我们证明,我们的估测标准是随机的,与非对称效率的趋同不相容。与强的估算标准不同,我们的程序既不需要从有效影响功能中推导出,也不需要从有条件的结果模型中作出说明。我们的理论发展对在大型统计模型和大规模模拟业绩研究中使用高效的偏差加权加权估测算器产生了广泛影响。我们从大规模统计模型和大规模模拟性研究的角度评估了我们所提出的数据分析方法。