We present an approach for efficiently training Gaussian Mixture Model (GMM) by Stochastic Gradient Descent (SGD) with non-stationary, high-dimensional streaming data. Our training scheme does not require data-driven parameter initialization (e.g., k-means) and can thus be trained based on a random initialization. Furthermore, the approach allows mini-batch sizes as low as 1, which are typical for streaming-data settings. Major problems in such settings are undesirable local optima during early training phases and numerical instabilities due to high data dimensionalities. We introduce an adaptive annealing procedure to address the first problem, whereas numerical instabilities are eliminated by using an exponential-free approximation to the standard GMM log-likelihood. Experiments on a variety of visual and non-visual benchmarks show that our SGD approach can be trained completely without, for instance, k-means based centroid initialization. It also compares favorably to an online variant of Expectation-Maximization (EM) - stochastic EM (sEM), which it outperforms by a large margin for very high-dimensional data.


翻译:我们提出了一个高效培训方法,由Stochastic Gratic Emple (SGD) 以非静止的、高维的流流数据来高效培训Gossian Mixture模型(GMMM),我们的培训计划并不要求数据驱动参数初始化(例如,k- means),因此可以随机初始化来培训。此外,该方法允许以流数据设置为典型的低至1的微型批量尺寸。这种环境中的主要问题在早期培训阶段是当地不可取的opima,并且由于高数据维度而造成数字不稳定性。我们引入了一种适应性Anneal 程序来解决第一个问题,而数字不稳定性则通过对标准的GMM日志相似性使用无指数的近似度来消除。关于各种视觉和非视觉基准的实验表明,我们的SGD方法可以完全培训,例如没有以k-poors为基础的中位初始化。它也比得上一个预期-最大度的在线变异(EM)- stochetric EM(sEM),它通过高维的数据比高差值。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员