This paper studies inference in linear models whose parameter of interest is a high-dimensional matrix. We focus on the case where the high-dimensional matrix parameter is well-approximated by a ``spiked low-rank matrix'' whose rank grows slowly compared to its dimensions and whose nonzero singular values diverge to infinity. We show that this framework covers a broad class of models of latent-variables which can accommodate matrix completion problems, factor models, varying coefficient models, principal components analysis with missing data, and heterogeneous treatment effects. For inference, we propose a new ``rotation-debiasing" method for product parameters initially estimated using nuclear norm penalization. We present general high-level results under which our procedure provides asymptotically normal estimators. We then present low-level conditions under which we verify the high-level conditions in a treatment effects example.
翻译:本文研究线性模型的推论,这些模型的参数是高维矩阵。 我们着重研究高维矩阵参数与“低级低级矩阵”非常接近的情况,其排名与其尺寸相比缓慢增长,其非零单值与无限值不一。我们显示,这一框架涵盖一系列广泛的潜在变量模型,可容纳矩阵完成问题、系数模型、不同系数模型、缺少数据的主要组成部分分析以及不同处理效果。关于推论,我们为最初使用核规范处罚估算的产品参数提出了一种新的“旋转-偏移”方法。我们介绍了一般高层次的结果,根据这些结果,我们的程序提供了无症状的正常估量。然后我们提出了低层次的条件,用以在治疗效果中验证高水平条件。