Many modern complex data can be represented as a graph. In models dealing with graph-structured data, multivariate parameters are not just sparse but have structured sparsity and smoothness in the sense that both zero and non-zero parameters tend to cluster together. We propose a new prior for high dimensional parameters with graphical relations, referred to as a Tree-based Low-rank Horseshoe(T-LoHo) model, that generalizes the popular univariate Bayesian horseshoe shrinkage prior to the multivariate setting to detect structured sparsity and smoothness simultaneously. The prior can be embedded in many hierarchical high dimensional models. To illustrate its utility, we apply it to regularize a Bayesian high-dimensional regression problem where the regression coefficients are linked on a graph. The resulting clusters have flexible shapes and satisfy the cluster contiguity constraint with respect to the graph. We design an efficient Markov chain Monte Carlo algorithm that delivers full Bayesian inference with uncertainty measures for model parameters including the number of clusters. We offer theoretical investigations of the clustering effects and posterior concentration results. Finally, we illustrate the performance of the model with simulation studies and real data applications such as anomaly detection in road networks. The results indicate substantial improvements over other competing methods such as sparse fused lasso.


翻译:许多现代复杂数据可以以图表形式呈现。在涉及图形结构数据的模型中,多变量参数不仅稀少,而且具有结构化的宽度和光滑性,因为零参数和非零参数往往会聚集在一起。我们提出了与图形关系具有高维参数的新先期建议,图形关系被称为树基低级马蹄(T-Lohoo)模型,它概括了在多变量设置之前流行的单向贝亚赛马蹄木马缩缩影,以同时探测结构宽度和平滑性。之前的多变量可以嵌入许多等级高维模型中。我们用它来说明其实用性。我们用它来规范贝亚高维高维回归率问题,在图形上将回归系数联系起来。由此产生的组合具有灵活的形状,并满足与图形有关的集束毗连性制约。我们设计了一个高效的马尔科夫链 Monte Carlo算法,以包括群集数量在内的模型参数的不确定性计量。我们提供了对组合效应和后空浓度结果的理论调查。我们用它来说明它的效用。我们用模型来规范贝亚高维的高度回归回归回归问题。我们用模拟模型的模型的模型的演算算算出其他模型的模型,作为模拟模型的模型的模型的模型,作为其他模型的模型。

1
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员