In the paper, we define a new parameter for tournaments called degreewidth which can be seen as a measure of how far is the tournament from being acyclic. The degreewidth of a tournament $T$ denoted by $\Delta(T)$ is the minimum value $k$ for which we can find an ordering $\langle v_1, \dots, v_n \rangle$ of the vertices of $T$ such that every vertex is incident to at most $k$ backward arcs (\textit{i.e.} an arc $(v_i,v_j)$ such that $j<i$). Thus, a tournament is acyclic if and only if its degreewidth is zero. Additionally, the class of sparse tournaments defined by Bessy et al. [ESA 2017] is exactly the class of tournaments with degreewidth one. We first study computational complexity of finding degreewidth. Namely, we show it is NP-hard and complement this result with a $3$-approximation algorithm. We also provide a cubic algorithm to decide if a tournament is sparse. Finally, we study classical graph problems \textsc{Dominating Set} and \textsc{Feedback Vertex Set} parameterized by degreewidth. We show the former is fixed parameter tractable whereas the latter is NP-hard on sparse tournaments. Additionally, we study \textsc{Feedback Arc Set} on sparse tournaments.
翻译:在纸面上, 我们定义了一个叫度宽的新参数, 这个参数可以被视为比环球比赛要远得多的量度。 以$\ Delta( T) 表示的比赛美元T$的度宽是最低值 $langle v_ 1,\dots, v_n\rangle$的峰值 $T$的值, 这样每个顶端都会在最高为 $x 的后向弧( textit{ i. e.} ) 中发生事件。 因此, 以美元(v_i,v_ex) 美元表示的比值是 $T$( T$) 的比值。 因此, 比赛的度宽度是最低值 $( T$) $( Delta( T) 美元) 的 。 此外, Besssy etleglegle 等人定义的低度赛级赛级赛级赛的等级是具有度的等级。 我们首先研究找到度宽度的计算复杂度 。 。 。 也就是我们用 3- crowdelexlexlexx 的比值研究提供 和补充结果的比值, 如果Set set rol rol roc rol rolalal d oralalalalalaldaldx 是 oraldaldaldaldaldaldaldaldal