We consider surface finite elements and a semi-implicit time stepping scheme to simulate fluid deformable surfaces. Such surfaces are modeled by incompressible surface Navier-Stokes equations with bending forces. Here, we consider closed surfaces and enforce conservation of the enclosed volume. The numerical approach builds on higher order surface parameterizations, a Taylor-Hood element for the surface Navier-Stokes part, appropriate approximations of the geometric quantities of the surface mesh redistribution and a Lagrange multiplier for the constraint. The considered computational examples highlight the solid-fluid duality of fluid deformable surfaces and demonstrate convergence properties that are known to be optimal for different sub-problems.
翻译:我们考虑表面有限的元素和模拟液体变形表面的半隐含时间踏板办法,这些表面以不可压缩的表面导航-斯托克斯方程式和弯曲力模拟。这里我们考虑封闭表面和强制保护封闭体积。数字方法以更高顺序的表面参数化、表层导航-斯托克斯部分的泰勒-Hood元素、表层网格再分配几何数量的适当近似值和制约的拉格朗乘数为基础。经过考虑的计算示例突出显示了液体变形表面的固体流性双重性,并展示了已知对不同子问题最理想的汇合性。