Higher-order unification (HOU) concerns unification of (extensions of) $\lambda$-calculus and can be seen as an instance of equational unification ($E$-unification) modulo $\beta\eta$-equivalence of $\lambda$-terms. We study equational unification of terms in languages with arbitrary variable binding constructions modulo arbitrary second-order equational theories. Abstract syntax with general variable binding and parametrised metavariables allows us to work with arbitrary binders without committing to $\lambda$-calculus or use inconvenient and error-prone term encodings, leading to a more flexible framework. In this paper, we introduce $E$-unification for second-order abstract syntax and describe a unification procedure for such problems, merging ideas from both full HOU and general $E$-unification. We prove that the procedure is sound and complete.
翻译:更高顺序的统一(HOU)涉及美元/升巴元计算器的统一(扩展),可被视为公式统一(E$-unification)的范例。我们研究语言术语的等式统一与任意的可变约束建筑的莫布洛任意的二阶等式理论。带有一般可变约束和可变可变可变的等式理论的抽象合成使我们得以与任意的粘合器合作,而不必承诺使用$/lambda$-calulus,或使用不方便和易出错的术语编码,从而形成更灵活的框架。我们在本文件中为二阶抽象语法引入了$-uncilation,并描述对此类问题的统一程序,将全部HOU和一般$-e-unification的概念结合起来。我们证明程序是合理和完整的。