We consider the problem of computing a grevlex Gr\"obner basis for the set $F_r(M)$ of minors of size $r$ of an $n\times n$ matrix $M$ of generic linear forms over a field of characteristic zero or large enough. Such sets are not regular sequences; in fact, the ideal $\langle F_r(M) \rangle$ cannot be generated by a regular sequence. As such, when using the general-purpose algorithm $F_5$ to find the sought Gr\"obner basis, some computing time is wasted on reductions to zero. We use known results about the first syzygy module of $F_r(M)$ to refine the $F_5$ algorithm in order to detect more reductions to zero. In practice, our approach avoids a significant number of reductions to zero. In particular, in the case $r=n-2$, we prove that our new algorithm avoids all reductions to zero, and we provide a corresponding complexity analysis which improves upon the previously known estimates.
翻译:我们考虑的是,对于一个特性为零或足够大的领域,对规模为1美元或1美元或1美元以上的未成年人,计算一个价值为1美元的F_r(M)美元基数的格列弗列夫列克·格列克(Gr\)“obner”基数的计算问题。这些套数不是常规序列;事实上,一个常规序列不能产生理想的$langle F_r(M)\r(r)\rangle美元。因此,在使用普通用途算法5美元来寻找所寻求的格列克纳基数时,一些计算时间浪费在削减为零上。我们使用第一个折合模式的美元(M)的已知结果来改进5美元的算法,以便发现更多的削减为零。在实践中,我们的方法避免了大量削减为零。特别是,在1美元=N美元的情况下,我们证明我们的新算法避免了所有的削减为零,我们提供了相应的复杂程度分析,从而改进了先前的估计数。