Intermediate-task transfer can benefit a wide range of NLP tasks with properly selected source datasets. However, it is computationally infeasible to experiment with all intermediate transfer combinations, making choosing a useful source task a challenging problem. In this paper, we anticipate that task-specific parameters updated in parameter-efficient tuning methods are likely to encode task-specific information. Therefore, such parameters can be predictive for inter-task transferability. Thus, we propose to exploit these efficiently tuned parameters as off-the-shelf task embeddings for the efficient selection of source datasets for intermediate-task transfer. We experiment with 11 text classification tasks and 11 question answering tasks. Experimental results show that our approach can consistently outperform existing inter-task transferability prediction methods while being conceptually simple and computationally efficient. Our analysis also reveals that the ability of efficiently tuned parameters on transferability prediction is disentangled with their in-task performance. This allows us to use parameters from early checkpoints as task embeddings to further improve efficiency.
翻译:中间任务传输可以有利于一系列广泛的NLP任务,并有适当选择的源数据集。 但是,对所有中间传输组合进行实验,使得选择有用的源任务成为一项具有挑战性的问题。 在本文件中,我们预计,在参数效率调试方法中更新的特定任务参数有可能编码特定任务的信息。因此,这些参数可以预测任务之间的可传输性。因此,我们提议利用这些高效调参数作为现成任务嵌入,以有效选择中间任务传输的源数据集。我们试验了11项文本分类任务和11项回答问题任务。实验结果显示,我们的方法可以始终超越现有的跨任务可传输性预测方法,同时在概念上简单,在计算上也有效。我们的分析还表明,高效调控可传输性预测参数的能力与其在任务中的性能脱钩。这使我们能够利用早期检查站的参数作为任务嵌入以进一步提高效率。