Many solid mechanics problems on complex geometries are conventionally solved using discrete boundary methods. However, such an approach can be cumbersome for problems involving evolving domain boundaries due to the need to track boundaries and constant remeshing. In this work, we employ a robust smooth boundary method (SBM) that represents complex geometry implicitly, in a larger and simpler computational domain, as the support of a smooth indicator function. We present the resulting equations for mechanical equilibrium, in which inhomogeneous boundary conditions are replaced by source terms. The resulting mechanical equilibrium problem is semidefinite, making it difficult to solve. In this work, we present a computational strategy for efficiently solving near-singular SBM elasticity problems. We use the block-structured adaptive mesh refinement (BSAMR) method for resolving evolving boundaries appropriately, coupled with a geometric multigrid solver for an efficient solution of mechanical equilibrium. We discuss some of the practical numerical strategies for implementing this method, notably including the importance of grid versus node-centered fields. We demonstrate the solver's accuracy and performance for three representative examples: a) plastic strain evolution around a void, b) crack nucleation and propagation in brittle materials, and c) structural topology optimization. In each case, we show that very good convergence of the solver is achieved, even with large near-singular areas, and that any convergence issues arise from other complexities, such as stress concentrations. We present this framework as a versatile tool for studying a wide variety of solid mechanics problems involving variable geometry.


翻译:在这项工作中,我们采用了一种稳健的平稳的边界方法(SBM),在更大、更简单的计算域中隐含地代表复杂的几何性,作为平稳指标功能的支持。我们提出了机械平衡的方程式,其中不相容的边界条件被源术语所取代。由此产生的机械平衡问题是半无穷的,因此难以解决。在这项工作中,我们提出了一个高效解决近正反射弹性弹性问题的计算战略。我们使用块结构的调整组合方法(BSAMR),在更大、更简单的计算域中,以适当解决不断演变的边界,同时使用几何结构的多格解答器,以有效解决机械平衡问题。我们讨论了实施这一方法的一些实际数字战略,特别是电网相对于正向中心域的重要性。我们为三个具有代表性的例子展示了解决方案的精确度和性:从我们目前这种结构的精度的精度、结构的精度的精度的精度和性变异性框架中,我们用这种结构的精度来展示了每一个在结构上的变异性领域的变异性研究。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员