Trustworthiness of artificially intelligent agents is vital for the acceptance of human-machine teaming in industrial manufacturing environments. Predictable behaviours and explainable (and understandable) rationale allow humans collaborating with (and building) these agents to understand their motivations and therefore validate decisions that are made. To that aim, we make use of G\"ardenfors's cognitively inspired Conceptual Space framework to represent the agent's knowledge using concepts as convex regions in a space spanned by inherently comprehensible quality dimensions. A simple typicality quantification model is built on top of it to determine fuzzy category membership and classify instances interpretably. We apply it on a use case from the manufacturing domain, using objects' physical properties obtained from cobots' onboard sensors and utilisation properties from crowdsourced commonsense knowledge available at public knowledge bases. Such flexible knowledge representation based on property decomposition allows for data-efficient representation learning of typically highly specialist or specific manufacturing artefacts. In such a setting, traditional data-driven (e.g., computer vision-based) classification approaches would struggle due to training data scarcity. This allows for comprehensibility of an AI agent's acquired knowledge by the human collaborator thus contributing to trustworthiness. We situate our approach within an existing explainability framework specifying explanation desiderata. We provide arguments for our system's applicability and appropriateness for different roles of human agents collaborating with the AI system throughout its design, validation, and operation.
翻译:暂无翻译