Real-world problems are often multi-objective with decision-makers unable to specify a priori which trade-off between the conflicting objectives is preferable. Intuitively, building machine learning solutions in such cases would entail providing multiple predictions that span and uniformly cover the Pareto front of all optimal trade-off solutions. We propose a novel approach for multi-objective training of neural networks to approximate the Pareto front during inference. In our approach, the neural networks are trained multi-objectively using a dynamic loss function, wherein each network's losses (corresponding to multiple objectives) are weighted by their hypervolume maximizing gradients. We discuss and illustrate why training processes to approximate Pareto fronts need to optimize on fronts of individual training samples instead of on only the front of average losses. Experiments on three multi-objective problems show that our approach returns outputs that are well-spread across different trade-offs on the approximated Pareto front without requiring the trade-off vectors to be specified a priori. Further, results of comparisons with the state-of-the-art approaches highlight the added value of our proposed approach, especially in asymmetric Pareto fronts.
翻译:现实世界的问题往往是多方面的,因为决策者无法先验地说明相互冲突的目标之间哪一种取舍更为可取。 直观地说,在这种情况下,建立机器学习解决方案需要提供涵盖并统一覆盖Pareto方方面面的所有最佳取舍解决方案的多重预测。 我们提出对神经网络进行多目标培训的新办法,以在推理过程中接近Pareto方方面面。 在我们的方法中,神经网络通过多客观地使用动态损失函数来培训,其中每个网络的损失(对应多个目标的碳)由其超大量梯度加权。我们讨论并解释为什么接近Pareto方的训练进程需要在单个培训样本的前沿优化,而不是仅仅在平均损失的前沿。关于三个多目标问题的实验表明,我们的方法回报产出在接近Pareto方方方面面的不同交易中非常广泛,而无需事先具体说明交易矢量。此外,与最新技术方法的比较结果突出了我们拟议方法的附加价值,特别是在不对称的帕雷托方方面面。