Student performance prediction is a critical research problem to understand the students' needs, present proper learning opportunities/resources, and develop the teaching quality. However, traditional machine learning methods fail to produce stable and accurate prediction results. In this paper, we propose a graph-based ensemble machine learning method that aims to improve the stability of single machine learning methods via the consensus of multiple methods. To be specific, we leverage both supervised prediction methods and unsupervised clustering methods, build an iterative approach that propagates in a bipartite graph as well as converges to more stable and accurate prediction results. Extensive experiments demonstrate the effectiveness of our proposed method in predicting more accurate student performance. Specifically, our model outperforms the best traditional machine learning algorithms by up to 14.8% in prediction accuracy.


翻译:学生的成绩预测是了解学生需求、提供适当的学习机会/资源和发展教学质量的关键研究问题。然而,传统的机器学习方法未能产生稳定和准确的预测结果。在本论文中,我们提出了一种基于图表的混合机学习方法,目的是通过多种方法的共识来提高单一机器学习方法的稳定性。具体地说,我们利用监督的预测方法和不受监督的集群方法,建立一种互动方法,在双边图表中传播,并接近于更稳定和准确的预测结果。广泛的实验表明我们所建议的方法在预测更准确的学生成绩方面的有效性。具体地说,我们的模型在预测准确性方面比最好的传统机器学习算法高出14.8%。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员