The challenges involved in executing neural networks (NNs) at the edge include providing diversity, flexibility, and sustainability. That implies, for instance, supporting evolving applications and algorithms energy-efficiently. Using hardware or software accelerators can deliver fast and efficient computation of the NNs, while flexibility can be exploited to support long-term adaptivity. Nonetheless, handcrafting an NN for a specific device, despite the possibility of leading to an optimal solution, takes time and experience, and that's why frameworks for hardware accelerators are being developed. This work, starting from a preliminary semi-integrated ONNX-to-hardware toolchain [21], focuses on enabling approximate computing leveraging the distinctive ability of the original toolchain to favor adaptivity. The goal is to allow lightweight adaptable NN inference on FPGAs at the edge.
翻译:暂无翻译