A long-standing gap exists between the theoretical analysis of Markov chain Monte Carlo convergence, which is often based on statistical divergences, and the diagnostics used in practice. We introduce the first general convergence diagnostics for Markov chain Monte Carlo based on any f-divergence, allowing users to directly monitor, among others, the Kullback--Leibler and the $\chi^2$ divergences as well as the Hellinger and the total variation distances. Our first key contribution is a coupling-based `weight harmonization' scheme that produces a direct, computable, and consistent weighting of interacting Markov chains with respect to their target distribution. The second key contribution is to show how such consistent weightings of empirical measures can be used to provide upper bounds to f-divergences in general. We prove that these bounds are guaranteed to tighten over time and converge to zero as the chains approach stationarity, providing a concrete diagnostic. Numerical experiments demonstrate that our method is a practical and competitive diagnostic tool.
翻译:暂无翻译