Recognizing a traffic accident is an essential part of any autonomous driving or road monitoring system. An accident can appear in a wide variety of forms, and understanding what type of accident is taking place may be useful to prevent it from reoccurring. This work focuses on classification of traffic scenes into specific accident types. We approach the problem by representing a traffic scene as a graph, where objects such as cars can be represented as nodes, and relative distances and directions between them as edges. This representation of a traffic scene is referred to as a scene graph, and can be used as input for an accident classifier. Better results are obtained with a classifier that fuses the scene graph input with visual and textual representations. This work introduces a multi-stage, multimodal pipeline that pre-processes videos of traffic accidents, encodes them as scene graphs, and aligns this representation with vision and language modalities before executing the classification task. When trained on 4 classes, our method achieves a balanced accuracy score of 57.77% on an (unbalanced) subset of the popular Detection of Traffic Anomaly (DoTA) benchmark, representing an increase of close to 5 percentage points from the case where scene graph information is not taken into account.
翻译:暂无翻译