Conformal prediction is a simple and powerful tool that can quantify uncertainty without any distributional assumptions. However, existing methods can only provide an average coverage guarantee, which is not ideal compared to the stronger conditional coverage guarantee. Although achieving exact conditional coverage is proven to be impossible, approximating conditional coverage is still an important research direction. In this paper, we propose a modified non-conformity score by leveraging local approximation of the conditional distribution. The modified score inherits the spirit of split conformal methods, which is simple and efficient compared with full conformal methods but better approximates conditional coverage guarantee. Empirical results on various datasets, including a high dimension age regression on image, demonstrate that our method provides tighter intervals compared to existing methods.
翻译:非正式的预测是一个简单而有力的工具,可以在不作任何分配假设的情况下量化不确定性;然而,现有方法只能提供平均覆盖率保障,与更强的有条件覆盖率保障相比,这不是理想的。尽管已经证明不可能实现精确的有条件覆盖率,但近似于有条件的覆盖率仍是一个重要的研究方向。在本文中,我们建议通过利用有条件分布的当地近似值来修改不兼容的得分。修改的得分继承了分一致方法的精神,这种方法与完全一致的方法相比是简单有效的,但更接近于有条件的覆盖率保障。 各种数据集的经验性结果,包括高维度图像年龄回归,表明我们的方法比现有方法提供了更严格的间隔。