This paper proposes a novel adaptive sample space-based Viterbi algorithm for target localization in an online manner. The method relies on discretizing the target's motion space into cells representing a finite number of hidden states. Then, the most probable trajectory of the tracked target is computed via dynamic programming in a Hidden Markov Model (HMM) framework. The proposed method uses a Bayesian estimation framework which is neither limited to Gaussian noise models nor requires a linearized target motion model or sensor measurement models. However, an HMM-based approach to localization can suffer from poor computational complexity in scenarios where the number of hidden states increases due to high-resolution modeling or target localization in a large space. To improve this poor computational complexity, this paper proposes a belief propagation in the most probable belief space with a low to high-resolution sequentially, reducing the required resources significantly. The proposed method is inspired by the k-d Tree algorithm (e.g., quadtree) commonly used in the computer vision field. Experimental tests using an ultra-wideband (UWB) sensor~network demonstrate our results.
翻译:本文建议了一个新的基于空间的适应性样样比 Viterbi 算法, 用于在线定位。 该方法依赖于将目标的移动空间分解成代表一定数量隐藏状态的单元格。 然后, 跟踪目标的最可能的轨迹通过隐藏的Markov 模型框架的动态编程计算。 拟议的方法使用一种贝叶斯估计框架, 既不局限于高斯噪音模型, 也不要求一个线性目标运动模型或传感器测量模型。 然而, 在由于大空间的高分辨率建模或目标定位而增加隐藏状态数目的情况下, HMM 定位方法的计算复杂性可能较低。 为了改进这一低分辨率的计算复杂性, 本文建议了在最可能具有低至高分辨率的信仰空间按顺序传播, 大量减少所需资源。 拟议的方法受计算机视觉领域常用的k-d树算法( e.g., ridtree) 的启发。 在超广频带传感器- 网络上进行的实验试验显示我们的结果。