Most recent studies on detecting and localizing temporal anomalies have mainly employed deep neural networks to learn the normal patterns of temporal data in an unsupervised manner. Unlike them, the goal of our work is to fully utilize instance-level (or weak) anomaly labels, which only indicate whether any anomalous events occurred or not in each instance of temporal data. In this paper, we present WETAS, a novel framework that effectively identifies anomalous temporal segments (i.e., consecutive time points) in an input instance. WETAS learns discriminative features from the instance-level labels so that it infers the sequential order of normal and anomalous segments within each instance, which can be used as a rough segmentation mask. Based on the dynamic time warping (DTW) alignment between the input instance and its segmentation mask, WETAS obtains the result of temporal segmentation, and simultaneously, it further enhances itself by using the mask as additional supervision. Our experiments show that WETAS considerably outperforms other baselines in terms of the localization of temporal anomalies, and also it provides more informative results than point-level detection methods.
翻译:最近关于探测和定位时间异常现象的最新研究主要利用深层神经网络,以不受监督的方式了解时间数据的正常模式。与这些网络不同,我们工作的目标是充分利用例(或弱)异常标签,这些标签仅表明是否在每一例时间数据中都发生过异常事件。在本文件中,我们介绍了WETAS,这是一个在输入实例中有效识别异常时间段(即连续时间点)的新框架。WETAS从例级标签中学习了歧视性特征,从而可以推断出每个例内正常和异常部分的顺序顺序,可以用作粗微的分割面罩。根据输入实例及其分解面罩之间的动态时间扭曲(DTW)调整(DW),WETAS获得了时间段分离的结果,同时,它通过将遮罩作为额外的监督而进一步加强了自身。我们的实验表明,WETAS在时间异常的局部化方面大大超出其他基线,而且它提供了比点级探测方法更具有信息性的结果。