We apply the Monte Carlo method to solving the Dirichlet problem of linear parabolic equations with fractional Laplacian. This method exploit- s the idea of weak approximation of related stochastic differential equations driven by the symmetric stable L\'evy process with jumps. We utilize the jump- adapted scheme to approximate L\'evy process which gives exact exit time to the boundary. When the solution has low regularity, we establish a numeri- cal scheme by removing the small jumps of the L\'evy process and then show the convergence order. When the solution has higher regularity, we build up a higher-order numerical scheme by replacing small jumps with a simple process and then display the higher convergence order. Finally, numerical experiments including ten- and one hundred-dimensional cases are presented, which confirm the theoretical estimates and show the numerical efficiency of the proposed schemes for high dimensional parabolic equations.
翻译:我们用蒙特卡洛方法解决线性抛物线方程式的 Dirichlet 问题。 这个方法利用了由对称稳定 L\'evy 进程驱动的相干相异方程式的微弱近似近似概念。 我们用跳跃调整方案来接近L\'evy 进程, 使边界有准确的退出时间。 当解决方案的规律性较低时, 我们通过删除 L\' evy 进程的小跳跃, 来建立一个数字化计算器, 然后显示趋同顺序。 当解决方案具有更高的规律性时, 我们通过用简单的进程取代小跳跃来建立更高层次的数字制, 然后显示更高的趋同顺序。 最后, 我们提出了包括10和100维案例在内的数字实验, 证实了理论估计, 并展示了高维parboli 方程式的拟议方案的数字效率 。