The paper addresses an optimal ensemble control problem for nonlocal continuity equations on the space of probability measures. We admit the general nonlinear cost functional, and an option to directly control the nonlocal terms of the driving vector field. For this problem, we design a descent method based on Pontryagin's maximum principle (PMP). To this end, we derive a new form of PMP with a decoupled Hamiltonian system. Specifically, we extract the adjoint system of linear nonlocal balance laws on the space of signed measures and prove its well-posedness. As an implementation of the design descent method, we propose an indirect deterministic numeric algorithm with backtracking. We prove the convergence of the algorithm and illustrate its modus operandi by treating a simple case involving a Kuramoto-type model of a population of interacting oscillators.
翻译:本文针对非本地连续性方程式在概率测量空间上的优化组合控制问题。 我们承认一般的非线性成本功能, 以及直接控制非本地矢量场条件的选项。 对于这个问题, 我们设计了一种基于 Pontryagin 最大原则( PMP ) 的下降方法。 为此, 我们用一种分离的汉密尔顿系统来产生一种新的PMP 形式。 具体地说, 我们从已签字措施空间中提取线性非本地平衡法的连接系统, 并证明它具有充分的能力。 作为设计下行法的实施, 我们建议一种间接的确定性数字算法, 与回溯跟踪法。 我们通过处理一个简单的案例, 涉及一个相互作用的振荡器人口模型, 来证明算法的趋同, 并展示其运作方式 。