In this manuscript, we consider a finite multivariate nonparametric mixture model where the dependence between the marginal densities is modeled using the copula device. Pseudo EM stochastic algorithms were recently proposed to estimate all of the components of this model under a location-scale constraint on the marginals. Here, we introduce a deterministic algorithm that seeks to maximize a smoothed semiparametric likelihood. No location-scale assumption is made about the marginals. The algorithm is monotonic in one special case, and, in another, leads to ``approximate monotonicity'' -- whereby the difference between successive values of the objective function becomes non-negative up to an additive term that becomes negligible after a sufficiently large number of iterations. The behavior of this algorithm is illustrated on several simulated datasets. The results suggest that, under suitable conditions, the proposed algorithm may indeed be monotonic in general. A discussion of the results and some possible future research directions round out our presentation.
翻译:在此手稿中, 我们考虑的是一种有限的多变量非参数混合模型, 边际密度之间的依赖性是使用 Copula 设备来建模的。 最近提出了Pseudo EM 随机算法, 以便在边际受到位置尺度的限制的情况下估计这个模型的所有组成部分。 在这里, 我们引入了一种确定式算法, 以尽量扩大平滑的半参数可能性。 没有就边际假设做出定位尺度的假设。 这个算法在一个特殊案例中是单调的, 在另一个案例中, 导致“ 近乎单一性 ”, 目标函数的连续值之间的差别变得非负值, 直至一个在足够多的迭代之后变得微不足道的添加性术语。 这个算法的行为在几个模拟数据集中加以说明。 结果表明, 在适当的条件下, 提议的算法可能确实是一元化的。 讨论结果和一些可能的未来研究方向, 绕出我们的演示。