The anisotropic diffusion equation is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and its interplay with the ambient magnetic field. This diffusion term contributes to the highly stiff nature of the CR transport equation. In order to conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods that directly compute the exponential of the matrix to solve the linear anisotropic diffusion equation. These methods allow us to take even larger step sizes; in certain cases, we are able to choose a step size as large as the simulation time, i.e., only one time step. This can substantially speed-up the simulations whilst generating highly accurate solutions (l2 error $\leq 10^{-10}$). Additionally, we test an approach based on extracting a constant diffusion coefficient from the anisotropic diffusion equation, where the constant coefficient term is solved implicitly or exponentially and the remainder is treated using some explicit method. We find that this approach, for homogeneous linear problems, is unable to improve on the exponential-based methods that directly evaluate the matrix exponential.
翻译:在理解银河系统、日光层的宇宙射线扩散及其与环境磁场的相互作用时,必须使用反向扩散方程式来理解银河系统、日光层的宇宙射线扩散及其与环境磁场的相互作用。这个扩散术语有助于CR迁移方程的高度僵硬性。为了对时间依赖宇宙射线传输进行数字模拟,隐含的混凝体传统上优于CFL限制的显性混集体,以便能够采取大步尺寸。我们建议了直接计算矩阵指数指数指数的指数性方法,以解决线性反异地扩散方程式的线性扩散方程式。这些方法使我们可以采取更大的步骤尺寸;在某些情况下,我们能够选择一个与模拟时间一样大的阶梯度,也就是说,只有一次步骤。这样可以大大加快模拟过程,同时产生非常精确的解决方案(l2错误$leq 10 ⁇ -10美元-10美元/10美元)。此外,我们测试了一种方法,即从异地扩散方方方方程式中提取一个恒定的传播系数系数,从而以隐含或指数的方式解决其余的参数,并用某种明确的方法处理。我们发现,这种方法能够直接改进指数式的指数式的指数性研究。我们发现,对于指数性矩阵的指数式的模型无法直接改进。