Let $\mathcal{G} = \{G_1 = (V, E_1), \dots, G_m = (V, E_m)\}$ be a collection of $m$ graphs defined on a common set of vertices $V$ but with different edge sets $E_1, \dots, E_m$. Informally, a function $f :V \rightarrow \mathbb{R}$ is smooth with respect to $G_k = (V,E_k)$ if $f(u) \sim f(v)$ whenever $(u, v) \in E_k$. We study the problem of understanding whether there exists a nonconstant function that is smooth with respect to all graphs in $\mathcal{G}$, simultaneously, and how to find it if it exists.
翻译:Let\mathcal{G} = $G_1 = (V, E_1),\ dots, G_m = (V, E_m) $ = 一组共同的顶点上定义的美元(V, E_m) = $(美元) = $(美元) = $(G_ 1 = 美元), G_m= (V, E_ 1) =$(dots, G_m) = $(V, E_m) = $(美元) $(美元, E_m) = $(美元) $(美元) = 美元(美元) = 美元(美元) 美元(美元) = 美元(美元) = 美元(美元) = 美元(美元) = 美元(美元) = 美元(G_ 1) $(G_ 1) = 美元(G_ 1) = $(G_ 1) $(G_ 1) = $(G_ 1) $(G_ 1) $(G_ 1) $(G_ 1) = $(G_ 1) $(G_ 1) $(G_ g) = = (G_ m) = (G) = (G_ m) = (G_ g) = (G_ g) $(G) = = $(美元) = = (美元) $(美元) = (G) = (G) = (美元) = (美元) = (美元, g) = (美元) = (美元, g) = (美元, g) = (美元) = (美元) = (美元) = (美元) = (V, g) = (美元) = (美元) = (美元) = (美元) 美元) = (V, G) = (美元) 美元) = (美元) 美元) 美元) 美元) 美元) = (美元= (美元(V, G)= (美元) 美元) 美元) 美元)