We give two fully dynamic algorithms that maintain a $(1+\varepsilon)$-approximation of the weight $M$ of a minimum spanning forest (MSF) of an $n$-node graph $G$ with edges weights in $[1,W]$, for any $\varepsilon>0$. (1) Our deterministic algorithm takes $O({W^2 \log W}/{\varepsilon^3})$ worst-case update time, which is $O(1)$ if both $W$ and $\varepsilon$ are constants. Note that there is a lower bound by Patrascu and Demaine (SIAM J. Comput. 2006) which shows that it takes $\Omega(\log n)$ time per operation to maintain the exact weight of an MSF that holds even in the unweighted case, i.e. for $W=1$. We further show that any deterministic data structure that dynamically maintains the $(1+\varepsilon)$-approximate weight of an MSF requires super constant time per operation, if $W\geq (\log n)^{\omega_n(1)}$. (2) Our randomized (Monte-Carlo style) algorithm works with high probability and runs in worst-case $O(\log W/ \varepsilon^{4})$ update time if $W= O({(m^*)^{1/6}}/{\log^{2/3} n})$, where $m^*$ is the minimum number of edges in the graph throughout all the updates. It works even against an adaptive adversary. This implies a randomized algorithm with worst-case $o(\log n)$ update time, whenever $W=\min\{O((m^*)^{1/6}/\log^{2/3} n), 2^{o({\log n})}\}$ and $\varepsilon$ is constant. We complement this result by showing that for any constant $\varepsilon,\alpha>0$ and $W=n^{\alpha}$, any (randomized) data structure that dynamically maintains the weight of an MSF of a graph $G$ with edge weights in $[1,W]$ and $W = \Omega(\varepsilon m^*)$ within a multiplicative factor of $(1+\varepsilon)$ takes $\Omega(\log n)$ time per operation.


翻译:我们给出两个完全动态的算法, 维持最坏的更新时间( 1美元) 美元, 最坏的更新时间( 0美元), 如果美元和 美元) 的比重( MSF ) 。 注意, 一个最小的森林比重( MSF ) $- node G$, 边际重量( $ $1, W] 美元) 。 (1) 我们的确定性算法需要美元( {W2\ 2\ log W} / varepsilon_ 3} 美元), 最坏的更新时间( 美元) 任何确定性数据结构( 1 美元) 和 美元 美元 。 注意, 帕特拉斯库和 Demaine (SIM J. computtle. 2006) 的比值更低, 这显示每次操作需要$\ omega ( log n) 准确的比重。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
[ICML2020]层次间消息传递的分子图学习
专知会员服务
33+阅读 · 2020年6月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年6月7日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
Arxiv
0+阅读 · 2021年11月19日
Sum-of-Squares Lower Bounds for Sparse Independent Set
Arxiv
0+阅读 · 2021年11月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年6月7日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
Top
微信扫码咨询专知VIP会员