In this work we establish lower bounds on the size of Clifford circuits that measure a family of commuting Pauli operators. Our bounds depend on the interplay between a pair of graphs: the Tanner graph of the set of measured Pauli operators, and the connectivity graph which represents the qubit connections required to implement the circuit. For local-expander quantum codes, which are promising for low-overhead quantum error correction, we prove that any syndrome extraction circuit implemented with local Clifford gates in a 2D square patch of $N$ qubits has depth at least $\Omega(n/\sqrt{N})$ where $n$ is the code length. Then, we propose two families of quantum circuits saturating this bound. First, we construct 2D local syndrome extraction circuits for quantum LDPC codes with bounded depth using only $O(n^2)$ ancilla qubits. Second, we design a family of 2D local syndrome extraction circuits for hypergraph product codes using $O(n)$ ancilla qubits with depth $O(\sqrt{n})$. Finally, we use circuit noise simulations to compare the performance of a family of hypergraph product codes using this last family of 2D syndrome extraction circuits with a syndrome extraction circuit implemented with fully connected qubits. While there is a threshold of about $10^{-3}$ for a fully connected implementation, we observe no threshold for the 2D local implementation despite simulating error rates of as low as $10^{-6}$. This suggests that quantum LDPC codes are impractical with 2D local quantum hardware. We believe that our proof technique is of independent interest and could find other applications. Our bounds on circuit sizes are derived from a lower bound on the amount of correlations between two subsets of qubits of the circuit and an upper bound on the amount of correlations introduced by each circuit gate, which together provide a lower bound on the circuit size.


翻译:在这项工作中,我们为测量通量保利运营商家族的克里福德电路的大小设定了较低的界限。 我们的界限取决于一对图形之间的相互作用: 一套测量的保利运营商的坦纳图, 以及代表执行电路所需的qubit连接的连接图。 对于本地的Exander量子代码, 这些代码有望实现低顶量量量量误差校正, 我们证明, 在2D平方块中与本地的克里福德电路连接的裂变电路在2美元(n) /\ sqrt{N} 上方, 我们的深度为2美元(n) 基离差值, 我们建议两个量的量的量的量的量的量的量的量子电路图, 我们的电路路电路电路的电路连接率是2美元(crqrd) 的量, 我们的量的量的量比值比值比值是2美元(nqublid) 的量, 我们的电路运量的量的量比值比值比值比值比值比值比值的每2美元, 的值的比值比值比值的比值的比值的比值是比值的两倍值的比值的比值的比值的比值的比值的比值, 的比值的比值的比值的比值能的比, 。

0
下载
关闭预览

相关内容

专知会员服务
97+阅读 · 2021年9月21日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2018年7月31日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月19日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2018年7月31日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员