The rapidly evolving field of Artificial Intelligence necessitates automated approaches to co-design neural network architecture and neural accelerators to maximize system efficiency and address productivity challenges. To enable joint optimization of this vast space, there has been growing interest in differentiable NN-HW co-design. Fully differentiable co-design has reduced the resource requirements for discovering optimized NN-HW configurations, but fail to adapt to general hardware accelerator search spaces. This is due to the existence of non-synthesizable (invalid) designs in the search space of many hardware accelerators. To enable efficient and realizable co-design of configurable hardware accelerators with arbitrary neural network search spaces, we introduce RHNAS. RHNAS is a method that combines reinforcement learning for hardware optimization with differentiable neural architecture search. RHNAS discovers realizable NN-HW designs with 1.84x lower latency and 1.86x lower energy-delay product (EDP) on ImageNet and 2.81x lower latency and 3.30x lower EDP on CIFAR-10 over the default hardware accelerator design.
翻译:迅速演变的人工智能领域要求采用自动化方法共同设计神经网络架构和神经加速器,以最大限度地提高系统效率和应对生产力挑战。为了能够联合优化这一广阔的空间,人们越来越关注不同的NN-HW共同设计。完全不同的共同设计减少了发现优化NNN-HW配置的资源需求,但未能适应一般硬件加速器搜索空间。这是因为许多硬件加速器搜索空间中存在不可同步(无效)的设计,使许多硬件加速器的搜索空间无法同步(无效)设计。为了能够高效和可实现可配置的硬加速器的共同设计,我们引入了RHNAS。 RHNAS是一种将硬件优化强化学习与不同神经结构搜索相结合的方法。 RHNAS发现,在图像网络和2.81x默认软硬件设计中,可实现1.84x低分辨率和1.86x低能量加速度设计。