We introduce TM-NET, a novel deep generative model for synthesizing textured meshes in a part-aware manner. Once trained, the network can generate novel textured meshes from scratch or predict textures for a given 3D mesh, without image guidance. Plausible and diverse textures can be generated for the same mesh part, while texture compatibility between parts in the same shape is achieved via conditional generation. Specifically, our method produces texture maps for individual shape parts, each as a deformable box, leading to a natural UV map with minimal distortion. The network separately embeds part geometry (via a PartVAE) and part texture (via a TextureVAE) into their respective latent spaces, so as to facilitate learning texture probability distributions conditioned on geometry. We introduce a conditional autoregressive model for texture generation, which can be conditioned on both part geometry and textures already generated for other parts to achieve texture compatibility. To produce high-frequency texture details, our TextureVAE operates in a high-dimensional latent space via dictionary-based vector quantization. We also exploit transparencies in the texture as an effective means to model complex shape structures including topological details. Extensive experiments demonstrate the plausibility, quality, and diversity of the textures and geometries generated by our network, while avoiding inconsistency issues that are common to novel view synthesis methods.


翻译:我们引入了 TM- NET, 这是一种新型的深厚基因模型, 用于以部分觉悟的方式合成纹理纹理的外壳。 一旦经过培训, 网络可以在没有图像指导的情况下, 为给给定的 3D 网格生成从零到零或预测纹理的新型纹理, 或为给定的 3D 网格生成新的纹理。 可以为同一网格部分生成可见的和不同的纹理质谱, 而同一形状的各部分之间的纹理兼容性则通过有条件的生成来实现。 具体而言, 我们的方法为个别形状部件制作了纹理图示图示图示图示图示图示, 导致自然紫外图示图示(通过 PartVAE) 和部分纹理(通过 TexturureVAE ) 分别嵌入各自的潜藏空间, 以便于学习以几何为条件的纹理概率分布。 我们引入一个有条件的自导模型, 以部分的几何和纹理图理为条件, 来实现质解的。 为了生成高频调的图理化细节。 我们的图理化图理化图理化图示, 我们的系统在高维深深处运行中, 的图理学的模型中, 也以利用了我们以制的图理学的图理学结构结构结构结构结构的图理学的图理学的图理学,,,,, 的图理学结构的图理学结构的图理学的图理, 的图理学,, 的图理学, 的图理学, 的图理学, 的图理学的图理学, 的图理学模型的图理结构的图理学的图理, 的图理, 的图理, 的图理, 的图理, 的图, 的图理学的图理学的图理学的图理, 的图理, 的图理, 的图理结构, 的图理, 的图理, 的图理结构, 的图理, 的图理, 的图理结构, 的图理, 以制, 的图理学, 的图理, 的图理,

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员