Highly directional millimeter wave (mmWave) radios need to perform beam management to establish and maintain reliable links. To do so, existing solutions mostly rely on explicit coordination between the transmitter (TX) and the receiver (RX), which significantly reduces the airtime available for communication and further complicates the network protocol design. This paper advances the state of the art by presenting DeepBeam, a framework for beam management that does not require pilot sequences from the TX, nor any beam sweeping or synchronization from the RX. This is achieved by inferring (i) the Angle of Arrival (AoA) of the beam and (ii) the actual beam being used by the transmitter through waveform-level deep learning on ongoing transmissions between the TX to other receivers. In this way, the RX can associate Signal-to-Noise-Ratio (SNR) levels to beams without explicit coordination with the TX. This is possible because different beam patterns introduce different impairments to the waveform, which can be subsequently learned by a convolutional neural network (CNN). We conduct an extensive experimental data collection campaign where we collect more than 4 TB of mmWave waveforms with (i) 4 phased array antennas at 60.48 GHz, (ii) 2 codebooks containing 24 one-dimensional beams and 12 two-dimensional beams; (iii) 3 receiver gains; (iv) 3 different AoAs; (v) multiple TX and RX locations. Moreover, we collect waveform data with two custom-designed mmWave software-defined radios with fully-digital beamforming architectures at 58 GHz. Results show that DeepBeam (i) achieves accuracy of up to 96%, 84% and 77% with a 5-beam, 12-beam and 24-beam codebook, respectively; (ii) reduces latency by up to 7x with respect to the 5G NR initial beam sweep in a default configuration and with a 12-beam codebook. The waveform dataset and the full DeepBeam code repository are publicly available.
翻译:高度方向毫米波( mmWave) 无线电台需要执行波流管理, 以建立和维护可靠的链接。 为此, 现有解决方案主要依靠发报机( TX) 和接收机( RX) 之间的明确协调, 从而大大减少用于通信的空气时间, 并使网络协议设计更加复杂。 本文通过展示DeepBeam 管理光束的框架来推进艺术状态, 这个框架不需要TX 的试点序列, 也不需要 RX 的直线扫描或同步。 可以通过以下推导实现 (i) 光子流( AoA) 的直流( AoA) 和(ii) 的多个波流( AA) 的直径( AA) 和 接收器( A) 的直径( A) 直径( A) 和直径( R) 直径( A) 直径( N) 直径( R) 直径( R) 直径( R) 和直径( R) 直径( R) 直径( R) 直径( R) 直径( R) 4 直径( R) 直) 直) 直径( R) 直) 直( R) 直) 直) 直) 向( 直( 直) 直) 直) 直) 直) 直) 直( 向( 向( 4 直) 直) 向) 向) 显示( 显示( 显示( 向) 向) ( 4 和( R) (O( 4 向) (O) (O) (O (O) (我们( R) (O) (O) (W) (我们( ) ) ) ) ) ) ) ) ) ) ) (我们 ) ) ) (O( ) (我们 ) ) ) (O) ) (O) 4 ) (我们( ) ( ) ) ) ( 4 ) ) (我们( ) ) ) ( ) ) (我们( ) ( ) ) ( ) ) (我们) ( ) (我们 ) ( ) (