A key challenge for autonomous vehicles is to navigate in unseen dynamic environments. Separating moving objects from static ones is essential for navigation, pose estimation, and understanding how other traffic participants are likely to move in the near future. In this work, we tackle the problem of distinguishing 3D LiDAR points that belong to currently moving objects, like walking pedestrians or driving cars, from points that are obtained from non-moving objects, like walls but also parked cars. Our approach takes a sequence of observed LiDAR scans and turns them into a voxelized sparse 4D point cloud. We apply computationally efficient sparse 4D convolutions to jointly extract spatial and temporal features and predict moving object confidence scores for all points in the sequence. We develop a receding horizon strategy that allows us to predict moving objects online and to refine predictions on the go based on new observations. We use a binary Bayes filter to recursively integrate new predictions of a scan resulting in more robust estimation. We evaluate our approach on the SemanticKITTI moving object segmentation challenge and show more accurate predictions than existing methods. Since our approach only operates on the geometric information of point clouds over time, it generalizes well to new, unseen environments, which we evaluate on the Apollo dataset.
翻译:自主车辆面临的一个关键挑战是在看不见的动态环境中航行。 将移动对象与静态的移动对象分离对于导航、 做出估计和理解其他交通参与者近期内移动的可能性至关重要。 在这项工作中,我们处理将属于当前移动物体的三维激光雷达点与从非移动物体获得的点区分开来的问题, 如行走行人或驾驶汽车, 从从非移动物体获得的点区分开来, 如墙, 但也停放汽车。 我们的方法是一系列观测到的LiDAR扫描, 并将它们转换成一个蒸气稀散的4D点云。 我们使用计算高效的稀释 4D演算来联合提取空间和时间特征, 并预测该序列中所有点的移动对象信心分数。 我们开发了一种退缩的地平线战略, 使我们能够预测在线移动的物体, 并根据新的观测结果改进预测结果。 我们用一个双湾过滤器将扫描结果重新整合成新的预测结果, 从而进行更可靠的估计。 我们评估我们关于SmanticKITTI移动对象分割的挑战的方法, 并显示比现有方法更准确的预测。 由于我们的方法只能对地球轨道上的数据环境进行评估, 。