This paper researches the unexplored task-point cloud salient object detection (SOD). Differing from SOD for images, we find the attention shift of point clouds may provoke saliency conflict, i.e., an object paradoxically belongs to salient and non-salient categories. To eschew this issue, we present a novel view-dependent perspective of salient objects, reasonably reflecting the most eye-catching objects in point cloud scenarios. Following this formulation, we introduce PCSOD, the first dataset proposed for point cloud SOD consisting of 2,872 in-/out-door 3D views. The samples in our dataset are labeled with hierarchical annotations, e.g., super-/sub-class, bounding box, and segmentation map, which endows the brilliant generalizability and broad applicability of our dataset verifying various conjectures. To evidence the feasibility of our solution, we further contribute a baseline model and benchmark five representative models for a comprehensive comparison. The proposed model can effectively analyze irregular and unordered points for detecting salient objects. Thanks to incorporating the task-tailored designs, our method shows visible superiority over other baselines, producing more satisfactory results. Extensive experiments and discussions reveal the promising potential of this research field, paving the way for further study.
翻译:本文研究了未探索的任务点云显性天体探测(SOD) 。 与图像的 SOD不同的是,我们发现点云的注意转移可能引起显著冲突, 也就是说, 一个对象自相矛盾地属于显要和非显要的类别。 为避免这一问题, 我们展示了一个全新的、 视景独立的突出对象视角, 合理反映点云情景中最能捕捉眼睛的物体。 根据这一提法, 我们引入了PCSOD, 为点云显性天体提议的第一组数据集, 由2 872个门内/门外3D视图组成。 我们数据集中的样本带有等级说明标签, 例如, 超级/ 子类、 捆绑框、 分块图等。 这显示了我们数据集在核实各种猜想时的极易懂性和广泛适用性。 为了证明我们解决方案的可行性, 我们进一步贡献了一个基线模型和基准五种代表性模型, 以便进行全面比较。 拟议的模型可以有效地分析探测突出对象的不规则和非顺序点。 感谢纳入任务定型的实验, 和前景深刻的实地研究,, 展示了我们最有希望的实地研究的实地研究的结果。